Scientific report on the implementation of project PN-II-ID-PCE-2011-3-0868; contract no. 264/2011 Period: January – December 2012

δn

According to the project proposal, the following objectives have been solved in the phase I/2012 of this pr

O1/ Critical parameters determining the properties of metallic nanoparticles (NP) usper edemosoporous SBA-15 support by MDI method (Mild Drying Impregnation)

In the first phase of the project, samples of mesoporous silica of SBA-type were prepared having dimension textural properties (in particular, the diameter of primary mesopores and micropores volume)¹ as we can mesoporous aluminosilica of Al-SBA-15-type with different chemical compositions.² In the second phase, the calci ed supports, stored in the absence of humidity, have been impregnated with aqueous solutions of the corresponding nitrates (by Incipient Wetness Impregnation method - IWI), followed by a drying stage in various conditions and finally calcination under the stagnant air conditions free from the "container effect"³ (specifications are shown in Table 1). Optionally, after drying, some samples were reduced directly in a hydrogen flow.

Nr	Sample	Code	Туре	Synthesis conditions/T. ermal treatment			
1	SBA-15	SBA-15[60]	Catalytic support	Hydrothermal treatment 60 °C, 48 b calcination 550 °C, desiccator CaCl ₂			
2	NiO/SBA-15	5NiO/SBA-15[60]/ 25-5	· · · ·				
3	CuO/SBA-15	5CuO/SBA-15[60]/25-5	Catalytic precursor	5wt.%, drying 25 °C, 5 day, calcination 500 °C			
4	Co ₂ O ₄ /SBA-15	5Co ₂ O ₄ /SBA-15[60]/25-5					
5	SBA-15	SBA-15[80]	Catalytic support	Hydrothermal eath, +80 °C, 48 h, calcination 550 °C, desiccator CaCl			
6	NiO/SBA-15	5NiO/SBA-15[80]/25-5	cualific support				
7	CuO/SPA 15	5CuO/SPA 15[80]/ 25 5	Catalytic precursor	5wt % sing 25 °C. 5 days calcination 500 °C			
8	$C_{0}O/SBA-15$	5Co O /SBA 15[80]/ 25-5	, F				
0	SBA-15	SBA-15[100]	Catalytic support	Hydrothermal trespent 100 °C 48 h calcination 550 °C designator CaCl-			
10	5DA-15	5NiO/SBA-15[100]/25-2	Catarytic support	drying 25 °C 2 zile calcination 500 °C			
10		5NiO/SBA-15[100]/ 25-2		Sut % colors 25 °C, 5 zile, calcination 500 °C			
11		5NiO/SDA-15[100]/25-5		5 wt.%, dry 1225 C, 52 ite, calcination 500 C			
12		5NiO/SDA-15[100]/25-20		50° dry g 25 °C 30 zile calcination 500 °C			
13		5NiO/SDA-15[100]/25-50	Catalytic precursor	Swt. 40 1g 25 °C, 50 zile, calcination 500 °C			
14		5NiO/SDA-15[100]/ 25-00		wt.%, drying 25 °C, 150 zile, calcination 500 °C			
15	NCO/CDA 15	5NiO/SDA-15[100]/ 23-150		wt.% drying 25°C, 150 Zile, calcination 500°C			
10	NIO/SDA-15	5NiO/SBA-15[100]/ 30-5		10° w 10° m 10° C 5 zile, calcination 500 °C			
17		10NEO/SDA 15[100]/ 25 2		10ut %, drying 100°C, 3 zile, calcination 500°C			
10		10NiO/SBA-15[100]/ 25-2		10wt.%, drying 25°C, 2 zhe, calcination 500°C			
19		10NiO/SBA-15[100]/ 25-5		10wt.%, drying 25°C, 5°Zile, calcination 500°C			
20		10NiO/SBA-15[100]/ 25-15		10wt.%, drying 25°C, 15 zile, calcination 500°C			
21		10NiO/SBA-15[100]/ 25-50		10wt.%, drying 25°C, 30 zile, calcination 500°C			
22		10NiO/SBA-15[100]/ 25-60		10wt.%, drying 25 °C, 60 zile, calcination 500 °C			
23	CuO/SBA-15	10NIO/SBA-15[100]/ 25-150		10wt.%, drying 25°C, 150 zile, calcination 500°C			
24		10CvO/SBA-15[100]/25-2		10vt % druing 25 °C 2 zile, calcination 500 °C			
25		10CuO/SBA-15[100]/ 25-2	Catalytic precursor	10wt.%, drying 25 °C, 5 zile, calcination 500 °C			
20		10CuO/SBA-15[100]/ 25-5		10wt % drying 25 °C, 15 zile, calcination 500 °C			
27		10CuO/SBA-15[100]/ 5 30		10wt % drying 25 °C, 15 Zile, calcination 500 °C			
20		10CuO/SBA-15[100] 25-50		10wt.%, drying 25 °C, 50 zile, calcination 500 °C			
30		10CuO/SBA-15[100]		10wt % drying 25 °C, 150 zile, calcination 500 °C			
31		5CuO/SBA 15[100]/ 50 5		Swt % drying 50 °C 5 zile calcination 500 °C			
32		5CuO/SBA-15[100]/ 1005		Swt %, drying 100 °C 5 zile, calcination 500 °C			
32		5Co-O./SBA-15[100]/	Catalytic precursor	Swt % drying 25 °C 5 zile calcination 500 °C			
3/		5C0-0-/St 515b 1/ 50-5		Swt %, drying 50 °C, 5 zile, calcination 500 °C			
35	Co ₃ O ₄ /SBA-15	5C03045 A 15[10] 100-5		5wt % drying 100 °C 5 zile calcination 500 °C			
36		$\frac{1000}{1000} = \frac{1000}{1000} = \frac{1000}{1000$		10 wt % drying 25 °C 5 zile, calcination 500 °C			
37	SBA-15	SR 15112	Catalytic support	Hydrothermal treatment 120 °C 48 h calcination 550 °C desiccator CaCl			
38	NiO/SBA-15	5Ni() A-15() 25-5	Catarytic support	Hydrotherman treatment 120°C, 40 n, calemation 550°C, desiceator CaCi			
39	CuO/SBA-15	5CuO/SB: 5[120]/25-5	Catalytic precursor	5wt % drving 25 °C 5 days calcination 500 °C			
40	Co ₂ O ₄ /SBA-15	5Co204/@BA-1-(120]/ 25-5	cumpite precuisor				
41	SBA-15	SBA-1 (140)	Catalytic support	Hydrothermal treatment 140 °C 48 h calcination 550 °C desiccator CaCl			
42	NiO/SBA-15	50/SBA-15[140]/ 25-5	Cutary are support				
43	CuO/SBA-15	5Cu SBA-15[140]/25-5	Catalytic precursor	5wt.%, drying 25 °C, 5 days, calcination 500 °C			
44	Co ₂ O ₄ /SBA-15	5Co ₃ O ₄ /SBA-15[140]/25-5	· · · · · · · · · · · · · · · · · · ·				
45		AN 90		pH adjusting method, Si/Al =100			
46		AS50	Catalytic support	pH adjusting method, Si/Al =50			
47	Al-SBA-	AS20		pH adjusting method, Si/Al =20			
48		AS10		pH adjusting method, Si/Al =10			
49		AS5		pH adjusting method, Si/Al =5			
50	Nic V-SBA-15	5NiO/AS50					
51	0/Ar PA-15	5CuO/AS50					
57	Co)4/Al-SL A-15	5Co ₃ O ₄ /AS50					
5	N ⁱ /Al-SBA-15	5NiO/AS5	Catalytic precursor	5wt.%, drying 25 °C, 5 days, calcination 500 °C			
5	JO/Al-SBA-15	5CuO/AS5	1				
55	-O ₄ /Al-SBA-15	5Co ₃ O ₄ /AS5	1				
		•	•	·			

Table 1. Sample summary of catalytic precursors (MO/SBA-15) prepared / M)L method.

In order to optimize the MDI method, the following parameters were investigated: (i) the texture of SBA-15, (ii) the drying time, (*iii*) pretreatment conditions after drying, (*iv*) the drying temperature, (v) the degree of loading with metals and (vi) the chemical composition of SBA-15 support.

O3/ Physico-chemical characterization of mono-metallic catalysts of M/SBA-15-type (M=Ni, Co

After calcination, the oxidic forms of metallic catalysts obtained by MDI (MO/SBA-15) were systematic an unalyzed by various techniques such as ICP-OES, XRD at small and wide angles, nitrogen physisorption at-1, 5 °C, T CM, insitu XRD at wide angles and TPR aiming to study the effect of synthesis parameters on he properties of (oxidic)metallic NP on SBA-15 support: chemical composition, morpho-structural and textural rop rule, reducibility of metal precursors, metal-support interactions and thermostability of nanoparticles in oxidit ng and reducing atmospheres, respectively (experimental details in Ungureanu et al.⁴). Metal forms were g neral, analyzed by *in-situ* XRD at wide angles and preliminarily by TEM and in-situ XPS.

Selection of the most significant results

According to the literature,^{4,5} the pore diameter of support (D_{pore}) can influence the average crystallite size of *(i)* metallic oxides (MO) (d_{MO}) by their geometric confinement in primary mesopores d_{MO} of confinement). In this respect, it was prepared a set of SBA-15 supports with calibrated D_{pore} in the range 7-10.9 m and different fractions of micropores (Table 2). It was noted that the evolution of d_{MO} (calculated with Scherrer quation from diffractograms at wide angles) as a function of D_{pore} largely depends on the nature of deposited MO Fig. 1A): (i) NiO/SBA-15: $d_{NiO} \sim$ D_{pore} (9.0 vs. 8.4 nm) only in the case of SBA-15[100] suggesting that \mathbf{n} support is favorable for the confined crystallization of NiO NPs in primary mesopores; (ii) $Co_3O_4/SBA-15$: d_{Co3O_4} (10.0 1.3 nm) is independent of D_{pore} .

Table 2. Textural properties of mesoporous support SBA-15 determined by nitrogen physisorption at -196 °C

Fig. 1. Evolution of the aver ge size of the crystallites of MO as function of: (A) - mesopores diameter of SBA-15, (B) - drying time.

For $D_{pore} > 8$ nm, d_{Co3O_1} values are close to the size of mesopores, suggesting also the confined crystallization of Co_3O_4 NP in primary mesopores close to the size of supports with larger pores; (iii) CuO/SBA-15: d_{CuO} decreases with increasing $D_{\text{pore.}}$ The size of crystallites 31.5 nm) is much larger than the dimensions of mesopores suggesting the transport of metal precursors to the support grains and formation of bulky oxide particles. In line with these results, subsequent investigations involve only the support SBA-15[100] which probably has an optimal meso-/micro-structure **x**, the a persion of NP in mesopores in the form of confined oxide particles, and stabilized in both primary mesopores and secondary micropores/mesopores (they form a secondary pore system with variable pore diameters from 1.5 n (supermicropores) to 4 nm (small mesopores) that interconnects the primary mesopores).

(ii) From Fig. 1B, it can be observed that the drying time dramatically influences the dispersion of NiO nanoparticles deposited on SBA-15[100] by the MDI method (drying at 25 °C) irrespective of the degree of loading with me γ (study (v): 5 and 10 wt.%), while the influence on the dispersion of CuO is negligible. Remarkably, in the case sam les 5NiO/SBA-15[100]/25-x, d_{NiO} decreases from ~ 8.5-9.2 nm (drying times 2-30 days; NPs dispersed ar con ned in mesopores) at 2.4 nm (drying time 150 days; NPs highly dispersed). In the case of samples with h, her ontent of Ni, it was necessary a longer drying time in order to achieve high dispersion (150 days; $d_{NiO} = 5.8$ nm). These results can be explained by the fact that the increased drying times favor the advanced hydrolysis of Ni(NO₃) $^{\circ}$ 6H₂O to Ni(NO₃) $^{\circ}$ 2Ni(OH) (phases with low mobility) and the formation of 1:1 Ni phylosilicate (1:1 Ni PS).⁴⁻⁶ Fig. 2 shows *in-situ* XRD diffractograms for samples dried at 25 °C and calcined at different temperatures: (i) it

is revealed the formation of NiO nanocrystals by the decomposition of Ni(NO₃)₂·2Ni(OH)₂ (marked with *) in the range of temperatures $200 \div 300$ °C, and (ii) irrespective of dispersion or metal loading degree, NiO NPs show high thermal stability to sintering under oxidative conditions (up to 600 °C).

Fig. 2. in-situ XRD patterns for (A) 5NiO/SBA-15[100]/25-2, (B) 5NiO/SBA-15[100]/2. 150 and (C) 10NiO/SBA-15[100]/25-150

Fig. 3. TEM images for (a) 5NiO/SBA-15[100]/ 25-2, (b) 5 xiO/SI A-15[100]/ 25-150, (c) 5Co₃O₄/SBA-15[100]/ 25-5 and (d) 5CuO/SBA-15[100]/ 25-2 after calc. >tion at 500 ° 2 under stagnant air atmosphere.

Some representative TEM images for MO/CTA-15 or ples are shown in Fig. 3: (*i*) bulky oxide aggregates (dimensions of 70-100 nm) on the external surface of SBA-15 grains were observed only for copper sample (image d);⁷ (*ii*) 5NiO/SBA-15[100]/25-2 (see figure a): NiO r inoparticles appear well dispersed and uniformly distributed in the form of polycrystalline particles with panor d-like morphology (diameters from 8-9 nm and variables length in the range $10 \div 50$ nm) and which are confined in mesopores (sometimes, NPs which have crystallized inside of 2-3 adjacent mesopores form small na obuncie-like aggregates);⁷ (iii) 5Co₃O₄/SBA-15[100]/25-5 (see figure c): 6-7 nanorod-like polycrystalline nanopartics, of Co₃O₄ are associated as nanobundle-like aggregates which form specific patches of 60-100 nm diameter on support grains; (*iv*) 5NiO/SBA-15[100]/25-150 (see figure b): NiO crystals are highly dispersed in mesopores in the form of NPs with sizes of 2-3 nm.

(iii) Interesting results concerning the dispersion of the metallic nanoparticles of nickel were obtained when the calcination step was avoide. (dried simples were directly subjected to reduction). The *in-situ* XRD diffractograms recorded under H₂/He flow for e.e. A samples (5 wt.%), calcined and non-calcined, are comparatively presented in Figs. 4A and B. Notice that an direct reduction leads to NPs of Ni⁰ undetectable by XRD, even after reduction at 600 °C, suggesting dimensions of particles smaller than 2 nm, as compared with the reduction of calcined form (note the diffraction peaks or Ni⁰ (2.0) planes and less intense diffraction peaks after reduction at 550 °C). It should be noted that the calcined to apple tresents a low reducibility of NiO particles (the presence of specific diffraction peaks of NiO after reduction at 55.0 °C), m accordance with its TPR profile. Fig. 4 c shows that even in the case of higher loadings (10 wt.%), the direct reduction results in nano- sized particles of Ni (i.e., 2.4 nm). It could be mentioned that in the case of Currentiar ng materials the strategy of direct reduction was not effective in stabilizing the NPs, while in the case of Co-combining catalyst in-situ XRD analyses have shown that the reduction of calcined form at 750 °C leads to excelle the sinter garding the dispersion (~ 2.5 nm in size). Thus, it could be claimed that MDI method - drying at 25 °C - is examely effective and versatile for obtaining (oxide)metal nanoparticles of Ni and Co highly dispersed and stability of with the sinter, g under severe oxidative and reductive conditions.

(*iv*) Another study was focused on the influence of drying temperature on the properties of metal nanoparticles. From Figure 4 it can be seen that regardless of the catalytic system, the temperature of 50 $^{\circ}$ C favors the formation of NPs with the lowest particle size, while the high temperatures lead to the lowest dispersions.

Fig. 4. *in situ* XRD patterns for (A) 5NiO/SBA-15[100]/25-2 calcined at 500 °C, (B) 5NiO/BA-15[100]/25-2 non-calcined and (C) 10NiO/SBA-15[100]/25-2 non-calcined.

Interestingly to note the value d_{NiO} of 6.1 nm after drying at 50 °C for 5 days very close to d_{NiO} = 6.8 nm after drying at 25 °C for 60 days. It can thus assume that, at least in the case of pickel-based materials, the positive effect of the increasing of drying temperature at 50 °C, which is similar to that of the increasing of drying time (i.e., advanced hydrolysis to the metal hydroxy-nitrates and formation of phylosin ates w th role of nucleation/stabilization centers of oxide NPs and of metallic ones resulted from their reduction.

Fig. 5. DRX pentru (A) 5NiO/SBA-15[100] . 5 (B) 5CuO/SBA-15[100]/x-5 si (C) 5Co₃O₄/SBA-15[100]/x-5 calcinate la 500 °C

(vi) Study on the effect of chemical composition of SBA-15 support on dispersion of metal NPs has been started in the last phase of the project. Experiments, carried out to date, have assumed the use of two Al-SBA-15 materials as support with different Al content (AS 50 and AS5). The results obtained on the MO/AS50 were in line with those obtained with MO/SBA-15, while the preliminary results obtained on MO/AS5 have shown a positive effect of the presence of aluminum on the dispersion of oxide nanoparticles as well as a negative effect on their reducibility, probably associated with the following of some thermostable and hardly reducible phases of metal aluminates during calcination.

O5/ Evaluation of M. 1 method in comparison with conventional methods of preparation

To attain this object. 12 other samples based on SBA-15[100] support (4 for each metal, 5 wt.%) have been prepared by wet in pregnation (WI), incipient wetness impregnation (IWI), precipitation (P) and deposition by precipitation (DP) methods. After calcination, the obtained materials have been systematically analyzed by the above mentioned technic tes and the results were compared with those obtained by MDI. For example, Fig. 6 illustrates that the method of preparation has a major influence on the structural, textural of and reducible properties of cobalt-based catalors. Compared to the conventional methods of impregnation, the results show that the optimized MDI method leads to higher dispersion of metallic precursors due to confinement/stabilization of nanoparticles of Co_3O_4 in n coppies of support ($d_{Co3O4} = 8.9$ nm ~ $D_{pore} = 8.4$ nm), while methods based on precipitation lead to higher dispersion, yet affect the support mesoporosity due to basic conditions of synthesis. Similar trends were observed for Ni and Cu materials.

Fig. 6 (A) N₂ adsorption/desoption isotherms, (B) XRD patterns at high angles (C) TPR profiles for 5 ₄/SBA-15[100] materials

O4/ Catalytic applications of metallic catalysts for chemoselective bydrogenation of cinnamaldehyde

The materials M/SBA-15 developed in this phase of the project have been tested in the liquid phase hydrogenation of cinnamaldehyde at 150 °C and atmospheric pressure. Some results are presented in Table 3, clearly illustrating the influence of several important factors (temperature, texture, drying the, chemical nature) and the neccesity to optimize the MDI method that proves to be very useful in obtaining efficient, atalysts. Thus, following the influence of the temperature, it can be seen that the maximum catalytic actionary poblation of the samples dried at 50 °C, regardless of the chemical nature of the active metal.

Table 5. Catalytic performances of W/SBA-15 matchais def tee off the BA-15, C0304/SBA-15 and Cd0/SBA-15									
No.	Sample	Code	Reac on ime, 1 in	X _{CNA} , % mole	S _{CNOL} , % mole	S _{HCNA} , % mole	S _{HCNOL} , % mole		
1.		5NiO/SBA-15[100]/25-5		95	0.7	77.2	22.3		
2.	NCO/CDA 15	5NiO/SBA-15[100]/ 50-5	150	100	0.1	90.4	9.5		
3.	NIU/SBA-15 (reduction at 250 °C)	5NiO/SBA-15[100]/ 10 5		52	1.6	94.6	3.9		
4.	(reduction at 550°C)	5NiO/SBA-15[100]/2 /150	90	95.4	1.2	88.3	10.5		
5.		5NiO/SBA-15[10 DP	360	0	-	-	-		
6.		5Co ₃ O ₄ /SBA-15[100, 55		55.4	53.0	16.3	30.7		
7.	Co ₃ O ₄ /SBA-15	5C03O4/SBA-15[100]/56	1440	76.6	48.9	13.8	37.3		
8.	(reduction at 500 °C)	5Co ₃ O ₄ /SBA[100]/ 100-5	1440	64.4	43.6	18.0	38.4		
9.		5Co ₃ O ₄ /SB -15[100]/ L		92.1	6.4	40.0	53.6		
10.		5CuO/SBA \5[100]/25-		2.0	37.6	23.6	38.8		
11.	CuO/SBA-15	د 5CuO/SBA-، 100]/ 50 ه	260	24.1	41.6	45.7	12.7		
12.	(reduction at 350 °C)	5Cu . 15[100, -10-5	300	2.4	23.7	20.1	56.2		
13.		5/ JO/SB 15[100]/ DP		43.2	38.7	44.6	16.8		

Table 3 Catalytic performances of M/SBA-15 materials deriver from CO/CAA-15, Co₂O//SBA-15 and CuO/SBA-15

According to the results of physico-characterizations, this behavior is associated with smaller size of metal crystallites resulting in higher dispersion diactive phases. In the case of nickel-based materials, it can be seen that similar results are obtained when the dring is run at 25 ° C, but for very long periods (150 days), that favors obtaining oxide NPs of very low dimensions 100 = 2.4 nm and 5.8 nm, for 5 or 10 wt.%). The most interesting results from the series of materials synthes zed by N DI method were obtained for sample Co₃O₄/SBA-15 dried at 50 °C (76.6% conversion and selectivity to CNOL of 48.9 %). When the samples obtained by MDI were compared with those prepared by traditional methods, was found that: (i) MDI lead to more active catalysts than those obtained through WI and IWI; (ii) the MDI me, d leads to catalysts with higher selectivity to unsaturated alcohol than those obtained by precipitation methods (coll catalysts) or with similar selectivity (copper catalysts).

The original results of the studies have been the subjects of 6 communications at international scientific events, 1 published ISI pape, and paper under evaluation (see Annex at the report).

References

- Galarne A.; Cam on, H.; Renzo, F. Di; Ryoo, R.; Choi, M.; Fajula, F. New J. Chem. 2003, 27, 73 - 79.
- Ungureanu, Dragoi, B.; Hulea, V.; Cacciaguerra, T.; Meloni, D.; Solinas, V; Dumitriu, E. Microporous Mesoporous Mater. 2012, 163, 51 - 64. 2
- 3. Sun, X.; Shi, Y., Zhang, P.; Zheng, C.; Zheng, X.; Zhang, F.; Zhang, Y.; Guan, N.; Zhao, D.; Stucky, G.D. J. Am. Chem. Soc. 2011, 133, 14542 - 14545.
- 4 bi, B.; Chirieac, A.; Royer, S.; Duprez, D.; Dumitriu, E. J. Mater. Chem. 2011, 21, 12529 - 12541. Ur
- M.; van Grotel, L. J. W.; Eggenhuisen, T. M.; Sietsma, J.R.A.; de Jong, K.P.; de Jongh, P.E. Cat. Today, 2011, 163, 27 32. 5 Woh
- beng, Z.X.; Che, M. J. Phys. Chem. 1993, 97, 5703-5712. 6

Project leader,

Prof.dr.ing. Emil DUMITRIU

eanu, A. Dragoi, B.; Chirieac, A.; Ciotonea, C.; Royer, S.; Duprez, D.; Mamede, A.S.; Dumitriu, E. ACS Appl. Mater. Interfaces, submitted